Lesson of the week

Syncope and falls due to timolol eye drops

Marije E Müller, Nathalie van der Velde, Jaap W M Krulder, Tiska J M van der Cammen

The prevalence of glaucoma increases with age. Timolol, a non-selective β blocker, is the first line treatment. We present three cases from our falls clinic, in which we show that even a low dose of timolol eye drops may cause severe systemic adverse effects.

Case reports

Case 1
A 73 year old man was referred by his general practitioner because he had been unconscious for half an hour the previous day. His medical history consisted of a myocardial infarction, glaucoma, and insulin dependent diabetes mellitus. During the past few years, he had experienced four spells of dizziness with severe perspiration. These spells had been ascribed to hypoglycaemia, although low blood glucose values had never been detected. His medication consisted of insulin, acetazolamide, allopurinol, and timolol eye drops (0.5%, twice daily in both eyes). During his last dizzy spell, his blood glucose concentration had been 8 mmol/L. According to his wife, the patient had not experienced a convulsion, tongue biting or urinary incontinence.

At referral to our clinic, the patient was alert and feeling well. Blood pressure was 142/90 mm Hg, with a regular pulse rate of 48 beats/min. There was no evidence of orthostatic hypotension. Further physical examination, including neurological examination, showed no abnormalities. Glycated haemoglobin (HbA1c) was slightly increased—8.2% (reference range 4–6%); the glucose day curve showed values of 4.6–17.4 (3.5–11) mmol/L, with no hypoglycaemia. Electrocardiography showed sinus bradycardia of 41 beats/min, and 24 hour Holter monitoring showed a sinus rhythm of 60 beats/min and frequent episodes of bradycardia, with a minimum frequency of 43 beats/min, during which the patient experienced presyncopal symptoms, which he recognised as dizzy spells mentioned before. His syncopal episodes were diagnosed as resulting from symptomatic bradycardia induced by timolol eye drops. After consultation with the ophthalmologist, the timolol eye drops were changed to lanatoside eye drops, a prostaglandin F2 analogue. Since then (a follow-up period of one and a half years), the patient has had no recurrence of syncope. A few weeks after the change in eye drops, a repeat Holter test showed a sinus rhythm of 80 beats/min, without bradycardia.

Case 2
A 78 year old woman complained of unexpected falls during the previous five years. Furthermore, she regularly had a feeling of lightheadedness and weakness in both arms. She had a five year history of glaucoma, for which she used lanatoside and timolol eye drops (0.5%, once daily in both eyes). Besides orthostatic hypotension, no other abnormalities were found at physical examination. Her supine blood pressure was 139/68 mm Hg, with a regular pulse rate of 98 beats/min; lowest blood pressure during three minutes of standing was 117/64 mm Hg, with a regular pulse rate of 96 beats/min. Electrocardiography showed sinus bradycardia of 55 beats/min. On tilt table testing, orthostatic hypotension was confirmed; supine blood pressure was 160/85 mm Hg, with a regular pulse rate of 58 beats/min, and lowest blood pressure during five minutes of standing 134/75 mm Hg, with a regular pulse rate of 62 beats/min. There was no vaso vagal collapse or carotid sinus hypersensitivity. Her falls were diagnosed as resulting from orthostatic hypotension, induced by timolol eye drops. Because of this, and because of an insufficient reaction of the glaucoma to the eye drops, her ophthalmologist decided to perform eye surgery, after which her eye drops were stopped. Since then (a follow-up period of one year) she has not experienced any more falls, nor has she experienced any more episodes of lightheadedness or weakness in the arms. On repeat tilt table testing, orthostatic hypotension did not occur.

Case 3
A 74 year old man with a metastasised prostate carcinoma, essential hypertension, and glaucoma presented, having had weekly falls with loss of consciousness for two years. He also often felt lightheaded on standing up. His medication consisted of losartan, aspirin, ilanatoside propranolol, and timolol eye drops (0.5%, twice daily in both eyes).

On examination, his blood pressure decreased from 145/95 mm Hg supine to 139/87 mm Hg on standing; at which point he recognised the prodromal symptoms of the syncope. Electrocardiography showed a sinus bradycardia of 49 beats/min. A tilt table test was performed; after three minutes there was a decrease in blood pressure from 167/103 mm Hg to 117/81 mm Hg, with a regular pulse rate of 68 beats/min and 62 beats/min respectively, and recognition of the prodromal symptoms. After 15 minutes of tilt table testing, blood pressure decreased to 85/74 mm Hg, with a regular pulse rate of 60/min, at which he fainted. The patient was diagnosed with systolic and diastolic orthostatic hypotension and vaso vagal syncope induced by timolol eye drops. The sinus bradycardia seen in the electrocardiogram was not associated with the prodromal symptoms. In consultation with the ophthalmologist, the timolol eye drops were discontinued. At repeat tilt table testing, no abnormalities were found. During follow-up for one year the patient had no complaints and no further falls or lightheadedness.

Discussion
Timolol is a non-selective β adrenergic antagonist without intrinsic sympathomimetic activity, which was first marketed in 1978. At least 80% of the administered drug drains through the nasolacrimal canal, where it is absorbed by the nasal mucosa. Thus it spreads systematically, and as there is no hepatic first
pass effect, the absorbed dose behaves like an intravenous drug dose.

At first the only side effect mentioned was a minor decrease in heart rate. By now numerous adverse events of timolol eye drops have been reported. The cardiovascular adverse events that have been reported are arrhythmia (bradycardia and tachycardia), hypotension, orthostatic hypotension, angina pectoris, myocardial infarction, heart failure, and syncope. A significant decrease in heart rate and exercise performance has been documented in a group of 20 young healthy volunteers, after a dose of two eye drops of timolol 0.5% twice daily, with no detectable plasma concentration, but the study also found a shortening of the pre-ejection period, indicating a negative isotropic effect. In older patients, the capability to increase heart rate is very important as exercise capacity largely depends on it.

As shown in case 3, orthostatic hypotension can be missed if tested on one occasion only. This may be explained by the fact that its presence varies during the day and between days. It is therefore useful to measure orthostatic hypotension at different occasions. Moreover, a slight decrease in systemic blood pressure can have major cardiovascular effects when there is pre-existing cerebrovascular insufficiency. When cerebrovascular insufficiency is suspected, tests such as transcranial Doppler ultrasonography should be carried out, or decisions should be made empirically.

Conclusion
Eye drops with β blocking action can have a strong and prolonged systemic effect, especially in older age groups. β blocker eye drops should be prescribed with caution in older patients and in patients with pre-existing cardiovascular morbidity. If such patients present with syncope, a systemic adverse drug reaction should be considered.

We thank the patients for permission to publish their cases.

Contributors: All authors had the idea. MEM, NDvE, and SdC wrote the paper, with contributions from JWvK. NDvE is the guarantor.

Funding: None.

Competing interests: None declared.

References

(Accepted 8 October 2005)

Spellbound by CO2

We have observed various spellings of words to describe carbon dioxide blood concentrations at scientific meetings, in textbooks, and in the published scientific literature (that is, with the suffix "capacit", "capacita", or "capacita"). According to Dorland's Illustrated Medical Dictionary and the Oxford English Dictionary, the correct suffix describing CO2 levels is "capacita" derived from the Greek root for smoke (kata). In contrast, the suffix "capacita" (we suspect) has been incorrectly derived from the Greek verb to breathe (pneuma), the absence of which (apnea), by coincidence, leads to hypopnea.

To explore this definitively, we searched for the words "hypercapacita", "hypercapacita", "hypercapnita", "hypercapnita", "hypercapnita", and "hypercapnita" on the websites of a series of general medical and specialty respiratory journals. Our hypothesis was that the spelling of words describing blood CO2 concentrations would be more accurate in respiratory journals than non-specialty journals.

Our initial search via Medline and PubMed of all scientific journals yielded a 2.24% error rate in the spelling of either hypercapnita or hypercapnita (87/3960 and 244/10538 citations respectively). We then examined the electronic records of the major respiratory journals; the misspelling rates were 3.8% (22/559) in the American Journal of Respiratory and Critical Care Medicine, 3.8% (22/559) in Chest, 2.8% (2-21) in the European Respiratory Journal, 2.4% (4/159) in Thorax, and 5.6% (2/36) in Respiratory—on average an average of 4.1%. In the general medical journals the error rates were 4.8% (5/92) in the New England Journal of Medicine, 5.9% (5/64) in the Lancet, 4.2% (1/24) in Annals of Internal Medicine, 2.4% (1/42) in BMJ, and 5.2% (1/19) in JAMA—an average of 4.9%.

It may be time for the medical profession to wake up from the apropoic world, look through the smoky haze, and initiate the correct spelling of CO2, disorders in future presentations and published scientific documents.

Firomata Grumman, Department of Allergy, Immunology, and Respiratory Medicine, Alfred Hospital and Monash University, Victoria, Australia.
Matthew T Naughton, Department of Allergy, Immunology, and Respiratory Medicine, Alfred Hospital and Monash University, Victoria, Australia.